Assessing phosphorus availability in paddy soils: the importance of integrating soil tests and plant responses

Author:

Martinengo Sara,Schiavon Michela,Santoro Veronica,Said-Pullicino Daniel,Romani Marco,Miniotti Eleonora Francesca,Celi Luisella,Martin Maria

Abstract

AbstractPhosphorus (P) cycling in paddy soil is closely related to iron (Fe) redox wheel; its availability to rice has thus generally been ascribed to Fe minerals reductive dissolution. However, the literature aimed to identify the best method for predicting rice available P does not uniformly point to Fe reductants. Rice plants can indeed solubilize and absorb P through many strategies as a function of P supply, modifying the chemical environment. Therefore, this study aims to estimate P availability in paddy soils coupling the redox mechanisms driving P cycling with concurrent plant responses. Soil available P was estimated in three groups of paddy soils with low, medium, or high P content assessing easily desorbable pools (0.01 M calcium chloride, Olsen, Mehlich-III, anion exchanging resins) and Fe-bound P pools (EDTA, citrate-ascorbate, and oxalate). Rice P uptake and responses to P availability were assessed by a mesocosm cultivation trial. Although P released in porewater positively correlated with dissolved Fe(II), it did not with plant P uptake, and readily desorbable P pools were better availability predictors than Fe-bound pools, mainly because of the asynchrony observed between Fe reduction and plant P demand. Moreover, in low P soils, plants showed higher Fe(II) oxidation, enhanced root growth, and up-regulation of P root transporter encoding genes, plant responses being related with changes in P pools. These results indicate the generally assumed direct link between Fe reduction and rice P nutrition in paddy soils as an oversimplification, with rice P nutrition appearing as the result of a complex trade-off between soil redox dynamics, P content, and plant responses.

Funder

Regione Lombardia

Università degli Studi di Torino

Publisher

Springer Science and Business Media LLC

Subject

Soil Science,Agronomy and Crop Science,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3