Nitrogen isotope enrichment predicts growth response of Pinus radiata in New Zealand to nitrogen fertiliser addition

Author:

Garrett Loretta G.ORCID,Lin YueORCID,Matson Amanda L.ORCID,Strahm Brian D.ORCID

Abstract

AbstractThe fertiliser growth response of planted forests can vary due to differences in site-specific factors like climate and soil fertility. We identified when forest stands responded to a standard, single application of nitrogen (N) fertiliser and employed a machine learning random forest model to test the use of natural abundance stable isotopic N (δ15N) to predict site response. Pinus radiata growth response was calculated as the change in periodic annual increment of basal area (PAI BA) from replicated control and treatment (~ 200 kg N ha−1) plots within trials across New Zealand. Variables in the analysis were climate, silviculture, soil, and foliage chemical properties, including natural abundance δ15N values as integrators of historical patterns in N cycling. Our Random Forest model explained 78% of the variation in growth with tree age and the δ15N enrichment factor (δ15Nfoliage − δ15Nsoil) showing more than 50% relative importance to the model. Tree growth rates generally decreased with more negative δ15N enrichment factors. Growth response to N fertiliser was highly variable. If a response was going to occur, it was most likely within 1–3 years after fertiliser addition. The Random Forest model predicts that younger stands (< 15 years old) with the freedom to grow and sites with more negative δ15N isotopic enrichment factors will exhibit the biggest growth response to N fertiliser. Supporting the challenge of forest nutrient management, these findings provide a novel decision-support tool to guide the intensification of nutrient additions.

Funder

New Zealand Forest Growers Levy Trust Inc

New Zealand Forest Research Institute Limited

Publisher

Springer Science and Business Media LLC

Subject

Soil Science,Agronomy and Crop Science,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3