Machine learning tool for the prediction of electrode wear effect on the quality of resistance spot welds

Author:

Panza LuigiORCID,Bruno GiuliaORCID,Antal GabrielORCID,De Maddis ManuelaORCID,Russo Spena PasqualeORCID

Abstract

AbstractThe quality of resistance spot welding (RSW) joints is strongly affected by the condition of the electrodes. This work develops a machine learning-based tool to automatically assess the influence of electrode wear on the quality of RSW welds. Two different experimental campaigns were performed to evaluate the effect of electrode wear on the mechanical strength of spot welds. The resulting failure load of the joints has been used to define the weld quality classes of the machine learning tool, while data from electrode displacement and electrode force sensors, embedded in the welding machine, have been processed to identify the predictors of the tool. Some machine learning algorithms have been tested. The most performing algorithm, i.e., the neural network, achieved an accuracy of 90%. This work provides important theoretical and practical contributions. First, the decreasing thermal expansion of the weld nugget as the electrode degradation advances results in a strong correlation between the difference of the maximum displacement value and the last value recorded during the welding and the relative failure load. Then, this work offers a practical decision support tool for manufacturers. In fact, the automatic detection of low-quality welds allows to reduce or eliminate unnecessary redundant welds, which are performed to compensate for the uncertainty of electrode wear. This leads to savings in time, energy, and resources for manufacturers. Finally, general recommendations for the timing of redressing or replacing the electrode are provided in the manuscript based on the company willingness to accept some non-compliant welds or not.

Funder

Politecnico di Torino

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3