A constraint-based approach for optimizing the design of overhead lines

Author:

Cicconi PaoloORCID,Manieri Steve,Nardelli Miriam,Bergantino Nicola,Raffaeli Roberto,Germani Michele

Abstract

AbstractThe use of computational methods in engineering design is a long-standing issue. Several mathematical approaches have been investigated in the literature to support the design optimization of engineering products. Most of them are focused on the optimization of a single structure, without considering a system of structures. The design of supports for electric lines requires tools for the management and sizing of a system of structures that interacts with each other under specific load conditions. This paper deals with a framework to support the design optimization of an overhead line using methods related to the theory of the Constraint Satisfaction Problem. The object-oriented model of a transmission line has been described and then implemented into a prototypical software platform. The parameters to be considered as variables are defined by the designer at the beginning of the optimization process. These variables are geometrical dimensions, poles locations, cable pre-tension, etc. The set of constraints is related to normative, climate conditions, datasheets, material limits, and expert knowledge. To demonstrate the effectiveness of this approach, a case study has been developed considering a variable number of constraints and parameters. In particular, the case study is focused on the design of a low-voltage sub-network between two distribution substations.

Funder

Università degli Studi Roma Tre within the CRUI-CARE Agreement

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Modelling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3