Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Modeling and Simulation
Reference35 articles.
1. Goldman, P., Muszynska, A.: Application of full spectrum to rotating machinery diagnostics. Doctoral dissertation, Bently Rotor Dynamics Research Corporation (1999)
2. Wang, S., Wang, Q., Xiao, Y., Liu, W., Shang, M.: Research on rotor system fault diagnosis method based on vibration signal feature vector transfer learning. Eng. Fail. Anal. 139, 106424 (2022). https://doi.org/10.1016/j.engfailanal.2022.106424
3. Edwards, S., Lees, A.W., Friswell, M.I.: Fault diagnosis of rotating machinery. Shock vibr. dig. 30(1), 4–13 (1998)
4. Muszynska, A.: Vibrational diagnostics of rotating machinery malfunctions. Int. J. Rotating Mach. 1, 237–266 (1995). https://doi.org/10.1155/S1023621X95000108
5. Rajabi, S., Azari, M.S., Santini, S., Flammini, F.: Fault diagnosis in industrial rotating equipment based on permutation entropy, signal processing and multi–output neuro–fuzzy classifier. Expert Syst. Appl. 206, 117754 (2022). https://doi.org/10.1016/j.eswa.2022.117754