Structural simulation of Ti–Ha–CaCO3 biocomposites using finite element analysis (FEA) for biomechanical stability of hip implant

Author:

Ibrahim Hassan Kobe,Abolarin Mathew Sunday,Abdulrahman Asipita Salawu,Omoniyi Peter OlorunlekeORCID,Mahamood Rasheedat Modupe,Jen Tien-Chien,Akinlabi Esther Titilayo

Abstract

AbstractThe structural integrity of new biocomposite implants is critical in ensuring the success of biomedical implants under physiological loading conditions. Studying the stress distribution, deformation, and potential failure modes under different loading scenarios is complex, expensive, and time-consuming, as it involves repeated surgery on clinical assessment. The present study aims to investigate the biomechanical stability of hip implants made of a Ti–Ha–CaCO3 biocomposite using finite element analysis. The Ti–Ha–CaCO3 biocomposite was modeled and simulated using Solidworks. The model mesh was generated to represent the implant’s geometry accurately, and normal human activities (standing and jumping) were considered the boundary conditions with the lower part of the femur fixed. The model was subjected to static loading following ISO 7206-4 with an equivalent load of 2300 N according to ASTM F2996-13 standard. The Ti–Ha–CaCO3 biocomposite demonstrated outstanding biomechanical stability under loading circumstances. The maximum von Mises stress (354.7 MPa) observed with the GSB-femur model in the implant was below the yield strength of the titanium implant, indicating that the implant can withstand applied loads without experiencing permanent deformation. However, 74.11 MPa was obtained as acceptable von Mises stress using GSB intramedullary rods for bone fixation. The most stable implant is DSB, with the lowest displacement value of 2.68 mm. Low equivalent strains were achieved for all the implants, as the highest strain (0.012) was obtained in the simulation of the stem DSB-femur model. Low-stress signals (SS) were obtained for the implant-femur models, indicating they are suitable for replacing bone for that loading. The DSB (7.19) is the most suitable among the studied stem-femur models, and GSB (0.87) remains the suitable intramedullary rod-femur model with the lowest SS.

Funder

University of Johannesburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3