Influence of inertia relief analysis on the topological optimisation of unconstrained structures

Author:

Lasso Perdomo Cristiam JavierORCID,Orquera MyriamORCID,Millet DominiqueORCID,Gabriel BertrandORCID

Abstract

AbstractThe growth in build volumes of additive manufacturing (AM) printers has enabled the manufacture of larger and more complex products, such as drones, known as unconstrained structures. This necessitates advanced optimisation techniques to achieve optimal designs. Inertia relief (IR) is a solution for analysing these structures by leveraging their inertial properties while considering concentrated non-structural masses. Unfortunately, designers often overlook the benefits of IR due to a lack of understanding, a preference for static techniques involving boundary conditions (BCs), or the absence of a methodology for IR. Existing literature lacks sufficient comparison and documentation of the mechanical performance losses resulting from the application of BCs instead of IR. Therefore, this study provides a detailed comparison of BC and IR designs, highlighting the advantages in terms of compliance, stress fields, and eigenfrequency performance. Additionally, based on the findings, it proposes a comprehensive design and optimization methodology tailored for IR + TO, demonstrating its advantages through a case study. Applied to the redesign of a drone structure, results reveal that IR-optimized designs achieve a mass saving of 13%, with up to 53% lower compliance and 12%–32% lower stress values compared to BC-optimized designs. Those significant differences highlight the crucial role of IR in achieving optimal designs for unconstrained systems. Besides, these findings underscore the enhanced mechanical performance and potential for material savings in IR + TO, bridging the gap between theoretical understanding and practical application. This research provides valuable insights and practical guidelines for engineers and designers aiming to optimize complex structures for AM.

Funder

Université de Toulon

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3