Modelling and simulation of lightweight hollow pins as a substitution for solid shear pins used for assembly joints in aerospace applications

Author:

Hiremath Shivashankar,Chiniwar Dundesh S.,Singh Zorawar,Behera Ajit,Saxena Kuldeep K.,Vishwanatha H. M.ORCID

Abstract

AbstractShear pins are generally used as a mechanical safeguard in assembly operations. They are considered sacrificial members which undergo early fracture to safeguard the other components in the assembly. Currently, solid shear pins are used and technically such pins add to the total weight of an assembly. Weight savings is one of the best contributions that can help the design of components to reduce weight and cost wise. In this regard, hollow shear pins can be a suitable alternative. However, there exists a minimum literature on the use of hollow shear pins in assemblies. The current work presents the theoretical and computational analysis of an industrially used solid shear pin that is modified as a hollow pin. Extensive modeling and simulation of the hollow pins are carried out to check the feasibility of replacing the solid shear pins with hollow shear pins. Due to the profound effect of the notch which changes stress concentration, it appears that weight savings using hollow notched pins possibly are not feasible while the hollow un-notched pins are beneficial. The industrial applicability of the hollow pins can be considered as beneficial components primarily towards functionality. In addition to the weight saving, they can also act as channels for passing wires and other similar entities of an assembly.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3