Bone turnover in rats treated with 1,25-dihydroxyvitamin D3, 25-hydroxyvitamin D3 or 24,25-dihydroxyvitamin D3

Author:

Mortensen Berit M.1,Gautvik Kaare M.1,Gordeladze Jan O.1

Affiliation:

1. Institute of Medical Biochemistry, University of Oslo, P.O. Box 1112, Blindern, N-0317 Oslo, Norway

Abstract

Female rats were given 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), 0.25 μg per 100 g body weight (bw), 25-hydroxyvitamin D3 (25(OH)D3), 1.7 μg/100 g bw or 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) 1.7 μg/100 g bw, subcutaneously three times a week for 12 weeks. Traditional variables pertaining to calcium homeostasis and growth, i.e. blood and urine calcium (Ca) and phosphate (P), serum levels of vitamin D3 metabolites parathyroid hormone, (PTH), calcitonin (CT), prolactin (PRL) and growth hormone (GH) were measured every four weeks. This data pool was correlated with bone matrix turnover parameters, i.e. serum levels of alkaline phosphatase (ALP) and urinary hydroxyproline (u-HYP) excretion. After 12 weeks of treatment, 1,25(OH)2D3 significantly enhanced serum total and ionized Ca, urine Ca and urine P, and also diminished urine cAMP due to reduced renal function (creatinine clearance). However, 25(OH)D3 administration had no such impact. 24,25(OH)2D3 opposed the effect of 1,25(OH)2D3 after 12 weeks by significantly augmenting serum P and diminishing serum levels of total Ca and ionized Ca. Cross sectional group analyses showed that criculating levels of ALP were directly related with serum 1,25(OH)2D3 and inversely related to serum 24,25(OH)2D3 and CT. Total u-HYP and per cent non-dialysable HYP (ndHYP) were reciprocally and positively correlated with serum PRL, respectively. However, no such relations were observed with serum GH. It appears that rats with elevated circulating levels of 1,25(OH)2D3 exhibit increased bone resorption, while augmented 24,25(OH)2D3 is associated with the opposite. Apparently, high bone turnover (i.e. reduced total urinary HYP and enhanced ndHYP) is associated with high serum PRL.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3