Improving the Performance of Boosting for Naive Bayesian Classification

Author:

Ting Kai Ming,Zheng Zijian

Publisher

Springer Berlin Heidelberg

Reference17 articles.

1. Bauer, E. & Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. To appear in Machine Learning, (1999).

2. Blake, C., Keogh, E. & Merz, C.J.: UCI Repository of Machine Learning Databases [ http://www.ics.uci.edu/~mlearn/MLRepository.html ]. Irvine, CA: University of California, Department of Information and Computer Science. (1998).

3. Breiman, L.: Bias, variance, and arcing classifiers. Technical Report 460, Department of Statistics, University of California, Berkeley, CA. (1996).

4. Cestnik, B.: Estimating probabilities: A crucial task in machine learning. Proceedings of European Conference on Artificial Intelligence. (1990) 147–149.

5. Cestnik, B., Kononenko, I., & Bratko, I.: ASSISTANT 86: A knowledge-elicitation tool for sophisticated users. In I. Bratko & N. Lavrač (eds.), Progress in Machine Learning–Proceedings of the Second European Working Session on Learning. (1987) 31–45. Wilmslow, UK: Sigma Press.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Healthcare predictive analytics using machine learning and deep learning techniques: a survey;Journal of Electrical Systems and Information Technology;2023-08-29

2. Artificial Intelligence and Machine Learning Techniques for COVID-19 Prediction;2022 International Conference on Advanced Computing Technologies and Applications (ICACTA);2022-03-04

3. A Novel Wrapper-Based Feature Selection for Heart Failure Prediction Using an Adaptive Particle Swarm Grey Wolf Optimization;Enhanced Telemedicine and e-Health;2021

4. Using Machine Learning to Predict the Defaults of Credit Card Clients;Fintech with Artificial Intelligence, Big Data, and Blockchain;2021

5. Placement Chance Prediction: Clustering and Classification Approach;Advances in Intelligent Systems and Computing;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3