Author:
Liu Tiantian,Xu Yaya,Hu Shaohua,Feng Shuyun,Zhang Hong,Zhu Xiaodong,Wang Chunxia
Abstract
AbstractSepsis is characterized by a metabolic disorder of amino acid occurs in the early stage; however, the profile of serum amino acids and their alterations associated with the onset of sepsis remain unclear. Thus, our objective is to identify the specific kinds of amino acids as diagnostic biomarkers in pediatric patients with sepsis. Serum samples were collected from patients with sepsis admitted to the pediatric intensive care unit (PICU) between January 2019 and December 2019 on the 1st, 3rd and 7th day following admission. Demographic and laboratory variables were also retrieved from the medical records specified times. Serum amino acid concentrations were detected by UPLC-MS/MS system. PLS-DA (VIP > 1.0) and Kruskal-Wallis test (p < 0.05) were employed to identify potential biomarkers. Spearman’s rank correlation analysis was conducted to find the potential association between amino acid levels and clinical features. The diagnostic utility for pediatric sepsis was assessed using receiver operating characteristic (ROC) curve analysis. Most of amino acid contents in serum were significantly decreased in patients with sepsis, but approached normal levels by the seventh day post-diagnosis. Threonine (THR), lysine (LYS), valine (VAL) and alanine (ALA) emerged as potential biomarkers related for sepsis occurrence, though they were not associated with PELOD/PELOD-2 scores. Moreover, alterations in serum THR, LYS and ALA were linked to complications of brain injury, and serum ALA levels were also related to sepsis-associated acute kidney injury. Further analysis revealed that ALA was significantly correlated with the Glasgow score, serum lactate and glucose levels, C-reactive protein (CRP), and other indicators for liver or kidney dysfunction. Notably, the area under the ROC curve (AUC) for ALA in distinguishing sepsis from healthy controls was 0.977 (95% CI: 0.925-1.000). The serum amino acid profile of children with sepsis is significantly altered compared to that of healthy controls. Notably, ALA shows promise as a potential biomarker for the early diagnosis in septic children.
Funder
Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant
National Natural Science Foundation of China
Natural Science Foundation of Shanghai
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Adeva-Andany M, López-Ojén M, Funcasta-Calderón R, Ameneiros-Rodríguez E, Donapetry-García C, Vila-Altesor M, Rodríguez-Seijas J (2014) Comprehensive review on lactate metabolism in human health. Mitochondrion 17:76–100
2. Ahn S, Lee SH, Chung KS, Ku NS, Hyun YM, Chun S, Park MS, Lee SG (2021) Development and validation of a novel sepsis biomarker based on amino acid profiling. Clin Nutr 40(6):3668–3676
3. Association WM (2013) World medical association declaration of Helsinki: ethical principles for medical research involving. Hum Subj JAMA 310(20):2191–2194
4. Biolo G, Toigo G, Ciocchi B, Situlin R, Iscra F, Gullo A, Guarnieri G (1997) Metabolic response to injury and sepsis: changes in protein metabolism. Nutrition 13(9 Suppl):52S–57S
5. Blaauw R, Nel DG, Schleicher GK (2020) Plasma glutamine levels in relation to Intensive Care Unit Patient Outcome. Nutrients 12(2)