In-peptide amino acid racemization via inter-residue oxazoline intermediates during acidic hydrolysis

Author:

Broberg AndersORCID,Nord Christina,Levenfors Jolanta J.,Bjerketorp Joakim,Guss Bengt,Öberg Bo

Abstract

AbstractIsopedopeptins are antibiotic cyclic lipodepsipeptides containing the subsequence L-Thr—L-2,3-diaminopropanoic acid—D-Phe—L-Val/L-3-hydroxyvaline. Acidic hydrolysis of isopedopeptins in D2O showed the D-Phe residues to racemize extensively in peptides with L-3-hydroxyvaline but not in peptides with L-Val. Similarly, one Leu residue in pedopeptins, which are related peptides containing the subsequence Leu—2,3-diaminopropanoic acid—Leu—L-Val/L-3-hydroxyvaline, was found to racemize in peptides with L-3-hydroxyvaline. Model tetrapeptides, L-Ala—L-Phe—L-Val/3-hydroxyvaline—L-Ala, gave the corresponding results, i.e. racemization of L-Phe only when linked to a L-3-hydroxyvaline. We propose the racemization to proceed via an oxazoline intermediate involving Phe/Leu and the L-3-hydroxyvaline residues. The 3-hydroxyvaline residue may form a stable tertiary carbocation by loss of the sidechain hydroxyl group as water after protonation. Elimination of the Phe/Leu H-2 and ring-closure from the carbonyl oxygen onto the carbocation results in the suggested oxazoline intermediate. The reversed reaction leads to either retained or inversed configuration of Phe/Leu. Such racemization during acidic hydrolysis may occur whenever a 3-hydroxyvaline residue or any amino acid that can form a stable carbocation on the C-3, is present in a peptide. The proposed mechanism for racemization was supported by incorporation of 18O in the 3-hydroxyvaline sidechain when the acidic hydrolysis was performed in H2O/H218O (1:1). The 2,3-diaminopropanoic residues of isopedopeptins and pedopeptins were also found to racemize during acidic hydrolysis, as previously described. Based on the results, the configuration of the Leu and 2,3-diaminopropanoic acid residues of the pedopeptins were reassigned to be L-Leu and D-Leu, and 2 × L-2,3-diaminopropanoic acid.

Funder

Ultupharma AB

Swedish University of Agricultural Sciences

Publisher

Springer Science and Business Media LLC

Subject

Organic Chemistry,Clinical Biochemistry,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3