Breathers and rogue waves for semilinear curl-curl wave equations

Author:

Plum MichaelORCID,Reichel WolfgangORCID

Abstract

AbstractWe consider localized solutions of variants of the semilinear curl-curl wave equation $$s(x) \partial _t^2 U +\nabla \times \nabla \times U + q(x) U \pm V(x) \vert U \vert ^{p-1} U = 0$$ s ( x ) t 2 U + × × U + q ( x ) U ± V ( x ) | U | p - 1 U = 0 for $$(x,t)\in {\mathbb {R}}^3\times {\mathbb {R}}$$ ( x , t ) R 3 × R and arbitrary $$p>1$$ p > 1 . Depending on the coefficients sqV we can prove the existence of three types of localized solutions: time-periodic solutions decaying to 0 at spatial infinity, time-periodic solutions tending to a nontrivial profile at spatial infinity (both types are called breathers), and rogue waves which converge to 0 both at spatial and temporal infinity. Our solutions are weak solutions and take the form of gradient fields. Thus they belong to the kernel of the curl-operator so that due to the structural assumptions on the coefficients the semilinear wave equation is reduced to an ODE. Since the space dependence in the ODE is just a parametric dependence we can analyze the ODE by phase plane techniques and thus establish the existence of the localized waves described above. Noteworthy side effects of our analysis are the existence of compact support breathers and the fact that one localized wave solution U(xt) already generates a full continuum of phase-shifted solutions $$U(x,t+b(x))$$ U ( x , t + b ( x ) ) where the continuous function $$b:{\mathbb {R}}^3\rightarrow {\mathbb {R}}$$ b : R 3 R belongs to a suitable admissible family.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Numerical Analysis,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3