Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Numerical Analysis,Analysis
Reference37 articles.
1. Alexandre, R., Wang, Y.-G., Xu, C.-J., Yang, T.: Well-posedness of the Prandtl equation in Sobolev spaces. J. Am. Math. Soc. 28(3), 745–784 (2015)
2. Cannone, M., Lombardo, M.C., Sammartino, M.: Well-posedness of Prandtl equations with non-compatible data. Nonlinearity 26(12), 3077–3100 (2013)
3. Chen, D., Wang, Y., Zhang, Z.: Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow. Ann. Inst. H. Poincaré Anal. 35, 1119–1142 (2018)
4. Chen, Q., Wu, D., Zhang, Z.: On the $$L^\infty $$ stability of Prandtl expansions in Gevrey class (2020). arXiv:2004.09755
5. Dietert, H., Gerard-Varet, D.: Well-posedness of the Prandtl equations without any structural assumption. Ann. PDE 5(1), 51 (2019) (Paper No. 8)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献