Abstract
AbstractWe investigate off-diagonal decay properties of the generalized Stokes semigroup with bounded measurable coefficients on $$\mathrm {L}^2_{\sigma } ({\mathbb {R}}^d)$$
L
σ
2
(
R
d
)
. Such estimates are well-known for elliptic equations in the form of pointwise heat kernel bounds and for elliptic systems in the form of integrated off-diagonal estimates. On our way to unveil this off-diagonal behavior we prove resolvent estimates in Morrey spaces $$\mathrm {L}^{2 , \nu } ({\mathbb {R}}^d)$$
L
2
,
ν
(
R
d
)
with $$0 \le \nu < 2$$
0
≤
ν
<
2
.
Funder
Johannes Gutenberg-Universität Mainz
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Numerical Analysis,Analysis
Reference10 articles.
1. Auscher, P.: On necessary and sufficient conditions for $$L^p$$-estimates of Riesz transforms associated to elliptic operators on $${\mathbb{R}}^n$$ and related estimates. Mem. Am. Math. Soc. 186, 871 (2007)
2. Auscher, P., Frey, D.: On the well-posedness of parabolic equations of Navier-Stokes type with $$\rm BMO^{-1}$$ data. J. Inst. Math. Jussieu 16(5), 947–985 (2017)
3. Auscher, P., Hofmann, S., Lacey, M., McIntosh, A., Tchamitchian, P.: The solution of the Kato square root problem for second order elliptic operators on $${\mathbb{R}}^n$$. Ann. Math. (2) 156(2), 633–654 (2002)
4. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge (1990)
5. Davies, E.B.: Uniformly elliptic operators with measurable coefficients. J. Funct. Anal. 132(1), 141–169 (1995)