Abstract
AbstractOrganic molecule stabilized face-centered cubic structured bismuth fluoride (BiF3) nanoparticles (NPs), space group: Fm-3 m, were prepared using a wet chemical synthesis route for symmetric supercapacitor application. For freestanding three electrode system, at current density (Cd) 3.3 A.g−1, the material displayed a maximum specific capacitance (SCp) value 717.3 F.g−1. The symmetric device based on BiF3 attained a maximum specific capacity (SC) value of 228.4 mAh.g−1 at 0.06 A.g−1. At the current density of 0.30 A.g−1, the device displayed the energy density (Ed) and power density (Pd) values of 0.17 Wh.kg−1 and 343.7 W.kg−1, respectively. Furthermore, the fabricated symmetric supercapacitor displayed 90% of capacity retention and 95% of coulombic efficiency at 0.12 A.g−1 for 1000 galvanostatic charge–discharge (GCD) cycles. The symmetric supercapacitor based on BiF3 NPs exhibited excellent electrochemical performance, which could be an appropriate choice for application in different integrated energy storage systems.
Funder
University of Johannesburg
Publisher
Springer Science and Business Media LLC