Frequency- and time-resolved photocurrents in vacuum-deposited stabilised a-Se films: the role of valence alternation defects

Author:

Jacobs Janet,Belev George,Brookfield Adam,Tuna Floriana,Kasap Safa,Curry Richard J.ORCID

Abstract

AbstractStabilised amorphous selenium (a-Se) is currently used in the majority of direct conversion mammographic X-ray imaging detectors due to its X-ray photoconductivity and its ability to be uniformly deposited over large area TFT substrates by conventional vacuum deposition. We report experimental results on photocurrent spectroscopy (frequency-resolved spectroscopy (FRS) and single-time transients), on vacuum-deposited a-Se films. We show that all measured photocurrents depend critically on the relative time spent by the material in the light and in the dark. We identify that the observed pronounced variation in optical response depends on the density of trapped (optically injected) charge within 200 nm of the surface and show that it is the ratio of dark and light exposure time that controls the density of such charge. Our data confirm that the localised charge radically influences the photocurrent transient shape due to the effective screening of the applied field within 200 nm of the surface. The field modification occurs over the optical extinction depth and changes both the photogeneration process and the drift of carriers. Many aspects of our data carry the signature of known properties of valence alternation pair (VAP) defects, which control many properties of a-Se. Modelling in the time domain shows that light generation of VAPs followed by optically triggered VAP defect conversion can lead to near-surface charge imbalance, demonstrating that VAP defects can account for the unusual optical response. The stabilised a-Se films were deposited above the glass transition temperature of the alloy with composition a-Se:0.3% As doped with ppm Cl. Electron paramagnetic resonance measurements at temperatures down to 5 K did not detect any spin active defects, even under photoexcitation above band gap.

Funder

The Royal Society

Natural Sciences and Engineering Council of Canada

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3