One-step spray of Cu2NiSnS4 thin films as absorber materials for photovoltaic applications

Author:

Dridi S.,Bitri N.,Mahjoubi S.,Chaabouni F.,Ly I.

Abstract

AbstractA simple one-step «Spray Pyrolysis» technique was developed for preparing Cu2NiSnS4 (CNTS) thin film followed by an annealing treatment process. Originally, the spray technique was successfully used to deposit the thin film onto glass substrate at 250 °C for 60 min spray duration. Again, the deposited thin film was annealed in a sulfur atmosphere at a temperature of 500 °C during 30 min. The sulfured thin film exhibits (111), (220) and (311) orientations correspond well to the cubic CNTS structure and other impurity compounds. The SEM data exhibit a uniform, rough and compact topography of CNTS thin films with an average-thickness of 1.36 µm. The absorption coefficient is found to be higher than 104 cm−1 in the visible region while the direct band energy of 1.62 eV, which is eminently suitable for use as an absorber in the solar cell. The complex impedance diagrams indicate the decrease of resistance by increasing temperature, which attributes to a semiconductor behavior. The close values of activation energies 0.63 and 0.54 eV determined from both angular frequency and DC conductivity indicate that the carrier transport mechanism is thermally activated.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3