Influence of sulfurization time and Cu-ZnS-Sn stack order on the properties of thermally evaporated CZTS thin films

Author:

Choudhari Nagabhushan Jnaneshwar,George Sajan D.,Raviprakash Y.ORCID

Abstract

AbstractCu2ZnSnS4 (CZTS) thin films were synthesized in a two-step procedure. Sulfurization of stacked thin films SLG/ZnS/Sn/Cu (S1) and SLG/Cu/Sn/ZnS (S2) after sequential deposition of Cu, ZnS, and Sn precursors was carried out. At 550 °C, two sulfurization periods were applied to both stack orders. Sample S1 sulfurized for 30 min (S1-T30) had a better crystallite size of roughly 50 nm, lower lattice strain, and lower dislocation density than other samples. The Cu/Zn cation ordering in the CZTS crystal system was significantly affected by stack sequence and sulfurization time, according to Q-factor calculation. The stack order of the S1 series allowed for homogenous and distinct particle development. From the elemental analysis, it is observed that the stack sequence and sulfurization used for sample S1-T30 permitted a near stoichiometric composition. The sample S1-T30 exhibited an optimal band gap value of 1.47 eV. To propose feasible alterations in the structural ordering, band gap calculations were used. In comparison to the stack order of the S2 series, the stack order SLG/ZnS/Sn/Cu with a sulfurization time of 30 min created a single-phase CZTS, implying less synthesis time to obtain an absorber quality CZTS layer for solar photovoltaic application.

Funder

Science and Engineering Research Board

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3