Synthesis and characterization of BaIrO3-doped YBCO superconducting thin films via TFA-MOD technique

Author:

Bektas Murat,Birlik Isil,Celik ErdalORCID

Abstract

AbstractHigh-temperature superconducting materials (HTS) are characterized by remarkably high critical current density (Jc) values when exposed to low temperatures and magnetic fields. In the realm of such investigations, various crystalline imperfections, including finely dispersed non-superconducting phases, dislocations, vacancies, grain boundaries, twin boundaries, antiphase boundaries, and insulating regions within grain boundaries, have been recognized as potential sources of pinning centers. However, it is essential to acknowledge that Jc values experience a rapid decline as the temperature rises in the presence of a magnetic field. The primary contributing factors to this decline are attributed to the intrinsic crystalline anisotropy of HTS materials and the thermal fluctuations that prevail at elevated temperatures. Nevertheless, a noteworthy factor in the diminishment of Jc values is the scarcity of efficacious pinning centers. In response to these challenges, a pioneering technology has emerged, revolving around nanostructure engineering for the deliberate creation of artificial pinning centers within HTS materials. In alignment with this approach, the present study endeavors to augment the critical current density and enhance the flux pinning properties of YBa2Cu3O6.56 (YBCO) superconducting films. This augmentation is achieved through the integration of BaIrO3 (BIO) perovskite nanodots, nanorods, or nanoparticles as strategically positioned pinning centers. The films are deposited on a SrTiO3 (STO) substrate employing the Trifluoroacetate Metal–Organic Deposition (TFA-MOD) technique. This research initiative seeks to contribute to the advancement of knowledge regarding the controlled manipulation of artificial pinning centers in HTS materials, particularly focusing on YBCO thin films, with the ultimate goal of enhancing their performance under the influence of elevated magnetic fields.

Funder

Istanbul Technical University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3