The output performance evaluations of multilayered piezoelectric nanogenerators based on the PVDF-HFP/PMN-35PT using various layer-by-layer assembly techniques

Author:

Paralı LeventORCID

Abstract

AbstractMultilayered Poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and lead magnesium niobate lead titanate Pb (Mg1/3Nb2/3) O3–PbTiO3 (PMN-35PT) composition-based piezoelectric nanogenerators (PNGs) were fabricated as series, parallel, and combined series-parallel connections using various layer-by-layer assembly techniques. Supporting the theoretical approaches with experimental results shows that the fabricated four-layered PNG with parallel connections (4L-P) reached an open-circuit voltage of 0.4 V (VRMS) and a maximum electrical power of 0.3 µW (PRMS) by drawing a current (IRMS) of 1.46 µA under a resistive load of 140.2 KΩ. Increasing the capacitance and decreasing the impedance with the fabrication of the four-layer PNG by connecting the layers in parallel connection with the support of the impedance matching process led to an increase in electrical output. With the use of an impedance matching system, the piezoelectric performance tests revealed that the 4L-P-based PNG had a 6.7 times greater electrical power efficiency (72.92 µW) at the vibrational frequency of 20 Hz compared to that of the single-layered PNG (10.82 µW). Furthermore, the multilayer PNG was successfully used as a wearable sensor for the monitoring of human body motions in real time on an IOT (Internet of Things) platform.

Funder

Manisa Celal Bayar University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3