Second and third order nonlinear optical, mechanical, surface characteristics of bis(thiourea) manganese chloride (BTMC) grown by slow cooling technique used for frequency conversion applications

Author:

Kubendiran T.,Ravi Kumar S. M.ORCID,Allen Moses S. E.,Nasareena Banu A.,Shanthi C.,Sivaraj S.

Abstract

Abstract A semiorganic nonlinear optical (NLO) single crystal of bis(thiourea) manganese chloride (BTMC) is grown successfully by slow cooling technique using water as solvent at temperature 45 °C. The optically good quality crystal of BTMC was grown with dimension up to 8 × 8 × 2 mm3 in a period of 2–3 weeks. The grown crystal crystallizes in orthorhombic crystal system which was confirmed by single crystal X-ray diffraction analysis. The various functional groups of BTMC were identified through FT-IR spectroscopic analysis. The lower cut-off wavelength of 280 nm was revealed from optical transmittance spectrum of UV. The mechanical behavior of BTMC crystal was analyzed by Vicker’s microhardness study and also the various mechanical parameters were determined. Vickers micro hardness test revealed, the titular crystal belongs to harder material category. The SHG efficiency is estimated from Kurtz-Perry powder method and it found to be 0.33 times than the reference material. The dielectric behavior, photo conducting nature and surface properties have been analyzed for grown BTMC crystal. The presence of synthesized elements was confirmed by EDAX study. The third order nonlinear optical susceptibility $$\chi^{\left(3 \right)}$$ χ 3 of the material is measured using Z-scan technique and it is found to be 5.1202 × 10−14 esu.

Funder

Science and Engineering Research Board, Department of Physics, Government of India

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3