Optimization of graphene dose for improved electrochemical performance of silicon–graphene negative electrodes in lithium batteries

Author:

Sanad Moustafa M. S.ORCID,Shenouda Atef Y.

Abstract

AbstractDifferent percentages of nanoparticles graphene (G) were mixed with nano-micron sized silicon (Si) particles as follows: 10, 20, 30 and 40 wt% graphene to silicon ratios. The crystal structure of pure Si powder pattern has cubic phase SEM, TEM/SAED and XPS equipments were implemented to study the surface properties of the prepared G@Si composites. Cyclic voltammetry (CV) measurement for the G@Si cell revealed two broad cathodic peaks, related to the deposition of Li2O thin layer on Si particles and the lithiation process of Si to form lithium silicide. Meanwhile, the oxidation of LixSi into Si and Li ionis confirmed by the anodic strong peak at 0.56 V. Electrochemical impedance spectroscopy (EIS) measurements revealed high interfacial resistance ~ 1825 Ω for pure Si anode in comparison with that of G@Si composite anode. It is concluded that graphene acts as a conductive shielding pathway to inhibit the large volume change and minimize the capacity fading during successive galvanostatic cycling of G@Si composite anode materials versus Li/Li+. Accordingly, the specific discharge capacity of 30%G@Si cell delivered about 1240 and 900 mAhg−1 for 1st and 100th charge–discharge cycles, respectively.

Funder

STDF

Central Metallurgical Research and Development Institute

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3