Abstract
AbstractThe cubic-tin sulfide (SnS) compound material is optimal for the absorber layer in photovoltaic technology. In this study, the role of annealing temperature on the physical properties of cubic-SnS thin film has been determined. The spray pyrolyzed SnS thin films were post-annealed, using the chemical vapor deposition system, at the temperature range between 350 and 500 °C The annealed films have been analyzed using a comprehensive range of characterization techniques i.e., X-ray diffraction (XRD), Raman spectroscopy, UV–Vis spectroscopy, Photoluminescence spectroscopy (PL), Field-emission scanning electron microscopy (FESEM), Energy dispersive spectroscopy (EDS) and Hall measurements. The XRD results discovered the phase deterioration of cubic-SnS at higher annealing temperatures i.e., > 350 °C. Further, the Raman analysis confirmed the cubic-SnS phase deterioration, along with the formation of SnS2 and Sn2S3 secondary phases, at higher annealing temperatures. Besides that, a band gap in the range of 1.63–1.68 eV has been obtained for the SnS thin films. The films exhibit the near-band edge emission peak in the PL spectra. Moreover, the SEM micrographs show the needle-shaped grains, and their size and distribution were increased with respect to the enhancement in annealing temperature. A considerable amount of sulfur inclusion was observed in EDS analysis and the films annealed at 450° exhibit the near stoichiometric composition ratio of Sn/S = 1.01. The hall measurement studies showed resistivity, carrier concentration, and mobility of 29.4–376.5 Ω cm, 4.2 × 1014–3.0 × 1016 cm−3 and 13.1–66.1 cm2/Vs, respectively.
Funder
Manipal Academy of Higher Education, Manipal
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献