Structure, Seebeck coefficient and DC electrical conductivity of Bi2Mn4O10 prepared by mechanochemical method

Author:

Fareed Shereef A.ORCID,Ibrahim Makram,Hannora Ahmed E.,El-Desoky M. M.

Abstract

AbstractBismuth and manganese oxides were mixed as source-materials using the mechanochemical technique followed by heat treatment to prepare the phase Bi2Mn4O10. The X-Ray Diffraction (XRD) analysis was carried out to obtain the formed phases during the mechanochemical process. Bismuth manganese oxide phase with the chemical formula Bi2Mn4O10 was formed at heat treatment 1073 K and was partially decomposed to γ-Bi12.8O19.2 and α-Mn2O3 after 5 h of milling time. The variation of the crystallite size is obtained at different milling time (1 h, 5 h, 10 h, 15 h, 30 h and 50 h). The temperature dependency of the DC electrical conductivity was observed at different milling times in the temperature range 300–425 K for the samples milled at 5 h, 10 h, 30 h and 50 h. The temperature dependency (300–4 80 K) of the thermoelectric power/Seebeck coefficient (S) and its modulus variation with milling time were observed; the modulus varied in the range (45 µV/K-277 µV/K). The concentration of manganese ions (N), the average distance between manganese ions (R) and the fraction (C) of reduced transition ions were calculated for all samples. The hopping carrier mobility (μ) of the samples was also calculated at a fixed temperature. As a result, the conduction mechanism agreed with the non-adiabatic process of small polaron hopping.

Funder

The National Research Institute of Astronomy and Geophysics

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3