Dielectric thermally conductive boron nitride/silica@MWCNTs/polyvinylidene fluoride composites via a combined electrospinning and hot press method

Author:

Wu Zijian,Gao Shunying,Wang Xuefei,Ibrahim Mohamed M.,Mersal Gaber A. M.,Ren Juanna,El-Bahy Zeinhom M.,Guo Ning,Gao Junguo,Weng Ling,Guo ZhanhuORCID

Abstract

AbstractWith the development of microelectronics towards integration, miniaturization and high power, the accumulation of heat in this small space has become a serious problem. Therefore, polymer matrix composites with high thermal conductivity and electrical insulation need to be developed urgently. Here, an ordered oriented boron nitride/silicon dioxide (silica) coated multiwalled carbon nanotubes (BN/SiO2@MWCNTs) thermally conductive network was constructed in a polyvinylidene fluoride (PVDF) matrix by electrostatic spinning technique, and subsequently the PVDF composites were prepared by hot-pressing. The synergistic effect of two-dimensional BN and one-dimensional MWCNTs in PVDF was investigated. It was found that the out-of-plane thermal conductivity of BN30/SiO2@MWCNTs composites reached 0.4693 Wm−1 K−1, which was 209% higher than that of pure PVDF and 10% higher than that of BN/PVDF composites. The in-plane thermal conductivity of BN30/SiO2@MWCNts) composites reached 1.5642 Wm−1 K−1, which was 1055% higher than pure PVDF and 40% higher than BN/PVDF composites. This is attributed to the synergistic effect of BN on SiO2@MWCNTs. Meanwhile, the volume resistivity and breakdown strength of the BN/SiO2@MWCNTs/PVDF composites reached 3.6 × 1013 Ω m and 47.68 kV/mm, respectively. The results indicate that the BN30/SiO2@MWCNTs/PVDF composites have excellent thermal conductivity and electrical insulating properties, which are promising for microelectronics applications.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3