Analysis of CeO2/SiO2 double-layer thin film stack with antireflection effect for silicon solar cells

Author:

Kanmaz ImranORCID,Tomakin MuratORCID,Uzum AbdullahORCID

Abstract

AbstractThis study introduces CeO2/SiO2 double-layer film stacks and its antireflection coating effect. Optical properties were analyzed by spectrophotometer measurements; surface morphology and cross-sections were observed by Scanning Electron Microscopy (SEM); elemental distributions and crystallographic properties were determined by Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD) measurements. Average reflectance of single-layer 0.3MSiO2, 0.6MSiO2, and 0.3MCeO2 thin films were 30.54%, 20.12%, and 14.23%, respectively. Average reflectance was decreased significantly down to 5.9% by 0.3MCeO2/0.6MSiO2 double-layer thin films comparing to those of the results of single-layer films and bare silicon surface reflection (~40%). Antireflective effect of the films on solar cells was estimated by simulation using the measured reflection data. Simulated solar cells indicate that 0.3MCeO2/0.6MSiO2 double-layer antireflective coatings are capable to increase the efficiency significantly and conversion efficiency of 21.7% could be achieved.

Funder

TUBITAK

Recep Tayyip Erdoğan University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3