Improved electrochemical performance of SiO2-coated Li-rich layered oxides-Li1.2Ni0.13Mn0.54Co0.13O2

Author:

James Abraham Jeffin,Nisar Umair,Monawwar Haya,Abdul Quddus Aisha,Shakoor R. A.ORCID,Saleh Mohamed I.,Kahraman Ramazan,Al-Qaradawi Siham,Aljaber Amina S.

Abstract

AbstractLithium-rich layered oxides (LLOs) such as Li1.2Ni0.13Mn0.54Co0.13O2 are suitable cathode materials for future lithium-ion batteries (LIBs). Despite some salient advantages, like low cost, ease of fabrication, high capacity, and higher operating voltage, these materials suffer from low cyclic stability and poor capacity retention. Several different techniques have been proposed to address the limitations associated with LLOs. Herein, we report the surface modification of Li1.2Ni0.13Mn0.54Co0.13O2 by utilizing cheap and readily available silica (SiO2) to improve its electrochemical performance. Towards this direction, Li1.2Ni0.13Mn0.54Co0.13O2 was synthesized utilizing a sol–gel process and coated with SiO2 (SiO2 = 1.0 wt%, 1.5 wt%, and 2.0 wt%) employing dry ball milling technique. XRD, SEM, TEM, elemental mapping and XPS characterization techniques confirm the formation of phase pure materials and presence of SiO2 coating layer on the surface of Li1.2Ni0.13Mn0.54Co0.13O2 particles. The electrochemical measurements indicate that the SiO2-coated Li1.2Ni0.13Mn0.54Co0.13O2 materials show improved electrochemical performance in terms of capacity retention and cyclability when compared to the uncoated material. This improvement in electrochemical performance can be related to the prevention of electrolyte decomposition when in direct contact with the surface of charged Li1.2Ni0.13Mn0.54Co0.13O2 cathode material. The SiO2 coating thus prevents the unwanted side reactions between cathode material and the electrolyte. 1.0 wt% SiO2-coated Li1.2Ni0.13Mn0.54Co0.13O2shows the best electrochemical performance in terms of rate capability and capacity retention.

Funder

Qatar National Research Fund

Qatar University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3