Electrical properties of PVC:BN nanocomposite as interfacial layer in metal-semiconductor structure

Author:

Badali YosefORCID

Abstract

AbstractIn this study, a comprehensive examination is assumed to investigate the influence of interfacial layers composed of polyvinyl chloride (PVC) and polyvinyl chloride-boron nitride (PVC: BN) on the electrical characteristics of the Au/n-Si structure. Two distinct structures, namely Au/PVC/n-Si (MPS1) and Au/PVC: BN/n-Si (MPS2), are fabricated for this purpose. The provided boron nitride (BN) nanostructures are analyzed using X-ray diffraction (XRD) patterns to determine their average crystalline size and surface morphology. Following the structural analysis, current-voltage (I–V) measurements are conducted over an extensive voltage range (± 3 V). Subsequently, the fundamental electrical properties of the developed Schottky structures are determined using various methods and compared. Experimental results indicate that the PVC: BN nanocomposite leads to an increase in the potential barrier height (BH), shunt resistance (Rsh), and rectifying rate (RR = IF/IR), while simultaneously decreasing the ideality factor (n), series resistance (Rs), and surface states density (Nss). It was discovered that the MS structure’s RR was 7 times lower than that of the MPS2 structure. Moreover, the energy-dependent Nss density is also derived using n(V) and ΦB0(V) functions. Based on the ln(IR)−VR0.5 profile at the reverse bias region, the Schottky-emission (SE) type conduction mechanism is effective for MS structures, whereas Poole-Frenkel-emission (PFE) is effective for MPS structures.

Funder

Istanbul Commerce University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3