Comparing low-temperature thermal and plasma sintering processes of a tailored silver particle-free ink

Author:

Yang WendongORCID,Hermerschmidt Felix,Mathies Florian,List-Kratochvil Emil J. W.

Abstract

AbstractSilver particle-free inks are under rapid development due to their unique properties. Currently, most of the developed silver particle-free inks contain multiple components. In addition to the necessary solvents and silver precursors, these inks also contain complexing agents, reducing agents, and various additives. While such complex compositions assure good stability and printability of the inks, they hamper the sintering process as excess time and energy are often required to remove residues from various compositions to ensure high conductivities of the printed structures. Thus, a simple ink system is expected. On the other hand, plasma sintering shows its sintering potential in treating silver particle-free inks, but is only employed for the sintering of silver nitrate or silver acetate-based inks. Consequently, developing new particle-free ink systems with simple compositions and exploring the potential of plasma sintering is very meaningful. In this work, a clear and transparent silver particle-free ink was formulated, which can be treated both by low-pressure argon plasma sintering and low-temperature thermal sintering (120–160 °C). The roles of 2-amino-2-methyl-1-propanol (AMP) in the ink formulation were investigated in detail, which not only acts as the solvent but also as the complexing agent for silver oxalate to lower the sintering temperature of the ink. The electrical performance of the formulated ink was examined for both sintering processes for different conditions. The thermal sintering resulted in a resistivity value of 24.3 μΩ·cm on glass substrates after treatment at 160 °C for 60 min, while the plasma sintering yielded a resistivity value of 29 μΩ·cm at 500 W for 30 min. Compared to thermal sintering, plasma sintering achieved a similar electrical performance, but with a more nonuniform film structure. The power, sintering time, and the pressure of argon are key factors responsible for the conductivity of the produced films. Nevertheless, both resistivity values do meet the minimal electrical requirements of most electronic applications.

Funder

Bundesministerium für Bildung und Forschung

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3