Abstract
AbstractBarium titanate is still the prototype of a piezoelectric crystalline material that has attracted many researchers and industrial partners to use. A modified citrate method was used to create barium titanate nanoparticles BaTi1−xZrxO3. The samples were crystallized in a single-phase tetragonal structure, as revealed using X-ray powder diffraction. The crystallite size decreases with increasing Zr concentration. Fourier-transform infrared spectra showed the main absorption bands of the samples BaTi1−xZrxO3. Field emission scanning electron microscopy micrographs illustrate that the doped sample BaTi0.9Zr0.1O3 is more porous and finer than the parent. For low Zr doping concentrations (x = 0.1), the ferroelectric properties of barium titanate are improved. The conduction mechanisms in the samples are small polaron hopping and correlated barrier hopping. The Zr/Ti ratio is a crucial parameter for tailoring the ferroelectric–paraelectric phase transition.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献