A specific slip length model for the Maxwell slip boundary conditions in the Navier–Stokes solution of flow around a microparticle in the no-slip and slip flow regimes

Author:

Wedel JanaORCID,Štrakl Mitja,Ravnik Jure,Steinmann Paul,Hriberšek Matjaž

Abstract

Abstract In the case of microscopic particles, the momentum exchange between the particle and the gas flow starts to deviate from the standard macroscopic particle case, i.e. the no-slip case, with slip flow occurring in the case of low to moderate particle Knudsen numbers. In order to derive new drag force models that are valid also in the slip flow regime for the case of non-spherical particles of arbitrary shapes using computational fluid dynamics, the no-slip conditions at the particle surface have to be modified in order to account for the velocity slip at the surface, mostly in the form of the Maxwell’s slip model. To allow a continuous transition in the boundary condition at the wall from the no-slip case to the slip cases for various Knudsen (Kn) number value flow regimes, a novel specific slip length model for the use with the Maxwell boundary conditions is proposed. The model is derived based on the data from the published experimental studies on spherical microparticle drag force correlations and Cunningham-based slip correction factors at standard conditions and uses a detailed CFD study on microparticle fluid dynamics to determine the correct values of the specific slip length at selected Kn number conditions. The obtained data on specific slip length are correlated using a polynomial function, resulting in the specific slip length model for the no-slip and slip flow regimes that can be applied to arbitrary convex particle shapes. Graphic abstract

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3