An inviscid model of unsteady separated vortical flow for a moving plate

Author:

Sohn Sung-IkORCID

Abstract

AbstractAn inviscid vortex shedding model for separated vortices from a solid body is studied. The model describes the separated vortices by vortex sheets and the attached flow via conformal mapping. We develop a computational model to simulate the vortex shedding of a moving body, with varying angle. An unsteady Kutta condition is imposed on the edges of the plate to determine the edge circulations and velocities. The force on the plate is obtained by integrating the unsteady Blasius equation. We apply the model to two representative cases of an accelerated plate, with impulsive start and uniform acceleration, and investigate the dynamics for large angles of attack. For both cases, the vortex force is dominant in the lift over times. The lift coefficients are initially high and decrease in four chord lengths of displacement, in general. For large angles of attack, the appearance of a peak of lift at an early time depends on the power-law velocity, which differs from the behavior for small angles of attack. The lift and drag from the model are in agreement with the Navier–Stokes simulation and experiment for moderate Reynolds numbers. We also demonstrate the vortex shedding of hovering and flapping plates. In the hovering motion, the large increase in lift at the early backward translation is due to the combined effect of the vortex force and added mass force. In the flapping plate, our model provides an improvement in the prediction for the induced force than other shedding models.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3