Staphylococcal protein A modulates inflammation by inducing interferon signaling in human nasal epithelial cells

Author:

Hu Hua,Liu Sha,Hon Karen,Psaltis Alkis J.,Wormald Peter John,Vreugde SarahORCID

Abstract

Abstract Objective and design Staphylococcus aureus (S. aureus) is one of the leading causes of human respiratory tract infections. The function of Staphylococcal protein A (SpA), expressed on the S. aureus bacterial membrane and released in the environment, on human nasal epithelial cells (HNECs) have not been fully elucidated. In this study, we tested the SpA expression in S. aureus from chronic rhinosinusitis patients and investigated the effects of SpA on HNECs inflammation through Interferon Gamma Receptor 1(IFNGR1)/phosphorylated Janus Kinase 2 (p-JAK2) pathway. Methods RNA profiling was performed to investigate inflammatory activation in a S. aureus chronic rhinosinusitis (CRS) mouse model. SpA release by S. aureus clinical isolates was determined using ELISA. The effect of purified SpA and SpA enriched conditioned media from S. aureus clinical isolates on HNECs cytotoxicity, apoptosis and release of inflammatory cytokines was evaluated using lactate dehydrogenase assays, and flow cytometry. SpA dependent IFNGR1 and p-JAK2 expression were assessed by qPCR, immunofluorescence and western blot in HNECs. Results 49 genes were significantly induced in S. aureus CRS mice indicative of activation of interferon signaling. SpA release was significantly higher in S. aureus clinical isolates from chronic rhinosinusitis with nasal polyps (CRSwNP) patients. Purified SpA significantly increased IFNGR1 mRNA and protein expression in HNECs. SpA induced cytotoxic effects and induced the release of Interleukin-6 (IL-6) and IL-8 in an IFNGR1 dependent way. Conclusion SpA induces interferon signaling through activation of the IFNGR1-JAK-2 pathway, which provides an understanding of how S. aureus SpA affects the inflammatory process in the upper airways.

Funder

National Health and Medical Research Council

National Natural Science Foundation of China

The University of Adelaide

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology,Immunology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3