Saccharomyces cerevisiae β-glucan improves the response of trained macrophages to severe P. aeruginosa infections

Author:

Ciszek-Lenda Marta,Nowak Bernadeta,Majka Grzegorz,Suski Maciej,Walczewska Maria,Fedor Angelika,Golińska Edyta,Górska Sabina,Gamian Andrzej,Olszanecki Rafał,Strus Magdalena,Marcinkiewicz Janusz

Abstract

Abstract Objective P. Aeruginosa (PA), the major pathogen of lung cystic fibrosis (CF), polarizes macrophages into hyperinflammatory tissue damaging phenotype. The main aim of this study was to verify whether training of macrophages with β-glucan might improve their response to P. aeruginosa infections. Methods To perform this task C57BL/6 mice sensitive to infections with P. aeruginosa were used. Peritoneal macrophages were trained with Saccharomyces cerevisiae β-glucan and exposed to PA57, the strong biofilm-forming bacterial strain isolated from the patient with severe lung CF. The release of cytokines and the expression of macrophage phenotypic markers were measured. A quantitative proteomic approach was used for the characterization of proteome-wide changes in macrophages. The effect of in vivo β-glucan-trained macrophages in the air pouch model of PA57 infection was investigated. In all experiments the effect of trained and naïve macrophages was compared. Results Trained macrophages acquired a specific phenotype with mixed pro-inflammatory and pro-resolution characteristics, however they retained anti-bacterial properties. Most importantly, transfer of trained macrophages into infected air pouches markedly ameliorated the course of infection. PA57 bacterial growth and formation of biofilm were significantly suppressed. The level of serum amyloid A (SAA), a systemic inflammation biomarker, was reduced. Conclusions Training of murine macrophages with S. cerevisiae β-glucan improved macrophage defense properties along with inhibition of secretion of some detrimental inflammatory agents. We suggest that training of macrophages with such β-glucans might be a new therapeutic strategy in P. aeruginosa biofilm infections, including CF, to promote eradication of pathogens and resolution of inflammation.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3