Sirt1 inhibits macrophage polarization and inflammation in gouty arthritis by inhibiting the MAPK/NF-κB/AP-1 pathway and activating the Nrf2/HO-1 pathway

Author:

Zhao Xu,Li Menglan,Lu Yiwei,Wang Mi,Xiao Jiawei,Xie Qingqing,He Xinyi,Shuai Shiquan

Abstract

Abstract Objective and design To elucidate Sirt1’s role in gouty arthritis inflammation and its potential mechanisms. Material Constructed murine models of gouty arthritis and conducted THP-1 cell experiments. Treatment 1 mg of MSU crystals injected into mice ankle joints for a 72-h intervention. After a 3-h pre-treatment with Sirt1-specific inhibitor (EX527) and agonist (SRT2104), inflammation was induced for 21 h using lipopolysaccharide (LPS) plus MSU crystals. Methods We assessed gouty arthritis severity through joint inflammation index, swelling, and hematoxylin and eosin (H&E) staining, and measured CD68 mononuclear macrophages and Sirt1 expression in synovial tissue via immunohistochemistry. ELISA, NO assay, RT-qPCR, Flow cytometry, and Western blot were utilized to examine macrophage inflammatory factors, polarization, reactive oxygen species(ROS), MAPK/NF-κB/AP-1 and Nrf2/HO-1 pathways proteins. Results Significant joint swelling, synovial tissue edema, and inflammatory cell infiltration were observed. CD68 mononuclear macrophages and Sirt1 expression were elevated in synovium. Sirt1 activation decreased inflammatory factors, M1 polarization, and ROS generation. Sirt1 activation reduced p38/JNK phosphorylation, thereby inhibiting downstream NF-κB p65/AP-1 and enhancing Nrf2/HO-1, thus suppressing inflammation. Conclusions Sirt1 alleviates M1 macrophage polarization and inflammation in gouty arthritis by inhibiting the MAPK/NF-κB/AP-1 pathway and activating the Nrf2/HO-1 pathway. Thus, activating Sirt1 may provide a new therapeutic target for gouty arthritis.

Funder

2022 Nanchong City Science and Technology Plan Project

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3