Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,General Computer Science
Reference28 articles.
1. A. Aggarwal, B. Chazelle, L. Guibas, C. O'Dunlaing, and C. Yap, Parallel computational geometry,Proc. of the 25th Annual IEEE Symposium on Foundations of Computer Science, 1985, pp. 468–477.
2. M. Ajitai, J. Komlos, and E. Szemeredi, Sorting inc logn parallel steps,Combinatorica,3, 1983, 1–19.
3. M. J. Atallah, R. Cole, and M. T. Goodrich, Cascading divide-and-conquer: a technique for designing parallel algorithms,Proc. of the 28th Annual IEEE Symposium on the Foundations of Computer Science, 1987, pp. 151–160.
4. M. J. Atallah and M. T. Goodrich, Efficient parallel solutions to some geometric problems,Proc. of the 1985 IEEE International Conference on Parallel Processing, pp. 411–417.
5. M. J. Atallah and M. T. Goodrich, Parallel algorithms for some functions of two convex polygons,Proc. of the 24th Allerton Conference on Communications, Control, and Computing, 1986.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Randomized Incremental Convex Hull is Highly Parallel;Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures;2020-07-06
2. Theoretically-Efficient and Practical Parallel DBSCAN;Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data;2020-06-11
3. Parallel Write-Efficient Algorithms and Data Structures for Computational Geometry;Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures;2018-07-11
4. Parallelism in Randomized Incremental Algorithms;Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures;2016-07-11
5. EXPLOITING THE MEMORY HIERARCHY OF MULTICORE SYSTEMS FOR PARALLEL TRIANGULATION REFINEMENT;Parallel Processing Letters;2012-07-08