Recessive ciliopathy mutations in primary endocardial fibroelastosis: a rare neonatal cardiomyopathy in a case of Alstrom syndrome

Author:

Zhao Yan,Wang Lee-kai,Eskin Ascia,Kang Xuedong,Fajardo Viviana M.,Mehta Zubin,Pineles Stacy,Schmidt Ryan J.,Nagiel Aaron,Satou Gary,Garg Meena,Federman Myke,Reardon Leigh C.,Lee Steven L.,Biniwale Reshma,Grody Wayne W.,Halnon Nancy,Khanlou Negar,Quintero-Rivera Fabiola,Alejos Juan C.,Nakano Atsushi,Fishbein Gregory A.,Van Arsdell Glen S.,Nelson Stanley F.,Touma MarlinORCID

Abstract

Abstract Among neonatal cardiomyopathies, primary endocardial fibroelastosis (pEFE) remains a mysterious disease of the endomyocardium that is poorly genetically characterized, affecting 1/5000 live births and accounting for 25% of the entire pediatric dilated cardiomyopathy (DCM) with a devastating course and grave prognosis. To investigate the potential genetic contribution to pEFE, we performed integrative genomic analysis, using whole exome sequencing (WES) and RNA-seq in a female infant with confirmed pathological diagnosis of pEFE. Within regions of homozygosity in the proband genome, WES analysis revealed novel parent-transmitted homozygous mutations affecting three genes with known roles in cilia assembly or function. Among them, a novel homozygous variant [c.1943delA] of uncertain significance in ALMS1 was prioritized for functional genomic and mechanistic analysis. Loss of function mutations of ALMS1 have been implicated in Alstrom syndrome (AS) [OMIM 203800], a rare recessive ciliopathy that has been associated with cardiomyopathy. The variant of interest results in a frameshift introducing a premature stop codon. RNA-seq of the proband’s dermal fibroblasts confirmed the impact of the novel ALMS1 variant on RNA-seq reads and revealed dysregulated cellular signaling and function, including the induction of epithelial mesenchymal transition (EMT) and activation of TGFβ signaling. ALMS1 loss enhanced cellular migration in patient fibroblasts as well as neonatal cardiac fibroblasts, while ALMS1-depleted cardiomyocytes exhibited enhanced proliferation activity. Herein, we present the unique pathological features of pEFE compared to DCM and utilize integrated genomic analysis to elucidate the molecular impact of a novel mutation in ALMS1 gene in an AS case. Our report provides insights into pEFE etiology and suggests, for the first time to our knowledge, ciliopathy as a potential underlying mechanism for this poorly understood and incurable form of neonatal cardiomyopathy. Key message Primary endocardial fibroelastosis (pEFE) is a rare form of neonatal cardiomyopathy that occurs in 1/5000 live births with significant consequences but unknown etiology. Integrated genomics analysis (whole exome sequencing and RNA sequencing) elucidates novel genetic contribution to pEFE etiology. In this case, the cardiac manifestation in Alstrom syndrome is pEFE. To our knowledge, this report provides the first evidence linking ciliopathy to pEFE etiology. Infants with pEFE should be examined for syndromic features of Alstrom syndrome. Our findings lead to a better understanding of the molecular mechanisms of pEFE, paving the way to potential diagnostic and therapeutic applications.

Funder

American Heart Association

U.S. Department of Defense

NIH/NHLBI

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Drug Discovery,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3