Aging- and alcohol-associated spatial transcriptomic signature in mouse acute pancreatitis reveals heterogeneity of inflammation and potential pathogenic factors

Author:

Tindall Rachel R.,Yang Yuntao,Hernandez Isabella,Qin Amy,Li Jiajing,Zhang Yinjie,Gomez Thomas H.,Younes Mamoun,Shen Qiang,Bailey-Lundberg Jennifer M.,Zhao Zhongming,Kraushaar Daniel,Castro Patricia,Cao YannaORCID,Zheng W. Jim,Ko Tien C.

Abstract

Abstract The rapidly aging population is consuming more alcohol, leading to increased alcohol-associated acute pancreatitis (AAP) with high mortality. However, the mechanisms remain undefined, and currently there are no effective therapies available. This study aims to elucidate aging- and alcohol-associated spatial transcriptomic signature by establishing an aging AAP mouse model and applying Visium spatial transcriptomics for understanding of the mechanisms in the context of the pancreatic tissue. Upon alcohol diet feeding and caerulein treatment, aging mice (18 months) developed significantly more severe AAP with 5.0-fold increase of injury score and 2.4-fold increase of amylase compared to young mice (3 months). Via Visium spatial transcriptomics, eight distinct tissue clusters were revealed from aggregated transcriptomes of aging and young AAP mice: five acinar, two stromal, and one islet, which were then merged into three clusters: acinar, stromal, and islet for the comparative analysis. Compared to young AAP mice, > 1300 differentially expressed genes (DEGs) and approximately 3000 differentially regulated pathways were identified in aging AAP mice. The top five DEGs upregulated in aging AAP mice include Mmp8, Ppbp, Serpina3m, Cxcl13, and Hamp with heterogeneous distributions among the clusters. Taken together, this study demonstrates spatial heterogeneity of inflammatory processes in aging AAP mice, offering novel insights into the mechanisms and potential drivers for AAP development. Key messages Mechanisms regarding high mortality of AAP in aging remain undefined. An aging AAP mouse model was developed recapturing clinical exhibition in humans. Spatial transcriptomics identified contrasted DEGs in aging vs. young AAP mice. Top five DEGs were Mmp8, Ppbp, Serpina3m, Cxcl13, and Hamp in aging vs. young AAP mice. Our findings shed insights for identification of molecular drivers in aging AAP.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3