On how defining and measuring a channel bed elevation impacts key quantities in sediment overloading with supercritical flow

Author:

Eslami Hasan,Yousefyani Hooshyar,Yavary Nia Mohsen,Radice AlessioORCID

Abstract

AbstractThe manuscript presents the results of an aggradation experiment performed in a laboratory channel with supercritical flow. The channel was fed with a stationary sediment load exceeding the transport capacity of the flow in the initial condition, thus inducing sediment aggradation and an increase of the bed slope. The experiment is part of a laboratory campaign mimicking sediment overloading in mountain rivers, a process that can determine increased hydraulic risk levels at key spots. A crucial issue in measuring sediment aggradation is the definition and determination of the bed elevation, this issue being quite relevant in experiments with a relatively large transport capacity, where a thick bed-load layer exists and hinders the possibility to determine with confidence a reference bed elevation. The determination of the bed elevation, in turn, impacts the quantification of a number of properties, including the initial sediment transport capacity of the flow, temporal scales of the aggradation process, water depth and Froude number. The manuscript presents a sensitivity analysis of the results to two extreme definitions for the bed elevation: the first one locates the bed at the upper edge of the bed-load layer, while the second one at the lower edge of the bed-load layer where the particles do not move. The presentation of the two alternatives is focused on the experimental methods they use, consistently with the intent of the special issue. Furthermore, it is demonstrated that the definition of the bed elevation also has a major impact on numerical models of the process. The experimental results have been reproduced numerically, demonstrating that the calibration parameters returning a best fit are also impacted significantly by how the bed is defined. The preferred definition for analyzing an experimental campaign is locating the bed below the bed-load layer.

Funder

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3