Artificial neural networks as a tool for pattern recognition and electrofacies analysis in Polish palaeozoic shale gas formations

Author:

Puskarczyk EdytaORCID

Abstract

Abstract Unconventional oil and gas reservoirs from the lower Palaeozoic basin at the western slope of the East European Craton were taken into account in this study. The aim was to supply and improve standard well logs interpretation based on machine learning methods, especially ANNs. ANNs were used on standard well logging data, e.g. P-wave velocity, density, resistivity, neutron porosity, radioactivity and photoelectric factor. During the calculations, information about lithology or stratigraphy was not taken into account. We apply different methods of classification: cluster analysis, support vector machine and artificial neural network—Kohonen algorithm. We compare the results and analyse obtained electrofacies. Machine learning method–support vector machine SVM was used for classification. For the same data set, SVM algorithm application results were compared to the results of the Kohonen algorithm. The results were very similar. We obtained very good agreement of results. Kohonen algorithm (ANN) was used for pattern recognition and identification of electrofacies. Kohonen algorithm was also used for geological interpretation of well logs data. As a result of Kohonen algorithm application, groups corresponding to the gas-bearing intervals were found. Analysis showed diversification between gas-bearing formations and surrounding beds. It is also shown that internal diversification in gas-saturated beds is present. It is concluded that ANN appeared to be a useful and quick tool for preliminary classification of members and gas-saturated identification.

Publisher

Springer Science and Business Media LLC

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3