Improving permeability estimation of carbonate rocks using extracted pore network parameters: a gas field case study
Author:
Publisher
Springer Science and Business Media LLC
Subject
Geophysics
Link
https://link.springer.com/content/pdf/10.1007/s11600-021-00563-z.pdf
Reference55 articles.
1. Aali J, Rahmani O (2012) H2S—origin in South Pars gas field from Persian gulf Iran. J Petrol Sci Eng 86:217–224
2. Afshari A, Shadizadeh S, Riahi M (2014) The use of artificial neural networks in reservoir permeability estimation from well logs: focus on different network training algorithms. Energy Sour Part A: Recover, Util Environ Effects 36:1195–1202
3. Akin S, Ross C, Kovscek A (2008) Combination of well log and pore-scale data to predict petrophysical properties of diatomite. J Petrol Sci Eng 60:133–149
4. Ali M, Chawathé A (2000) Using artificial intelligence to predict permeability from petrographic data. Comput Geosci 26:915–925
5. Aliouane L, Ouadfeul S-A, Boudella A Back Propagation and Hidden Weight Optimization Algorithms Neural Network for Permeability Estimation from Well-Logs Data in Shaly Sandstone Petroleum Reservoirs: Application to Algerian Sahara. In: Conference of the Arabian Journal of Geosciences, 2018. Springer, pp 25-27
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Estimation of pore structure and permeability in tight carbonate reservoir based on machine learning (ML) algorithm using SEM images of Jaisalmer sub-basin, India;Scientific Reports;2024-01-09
2. An ensemble-based machine learning solution for imbalanced multiclass dataset during lithology log generation;Scientific Reports;2023-12-07
3. Developing GAN-boosted Artificial Neural Networks to model the rate of drilling bit penetration;Applied Soft Computing;2023-03
4. A multiple-input deep residual convolutional neural network for reservoir permeability prediction;Geoenergy Science and Engineering;2023-03
5. The effects of planar structures on reservoir quality of Triassic Kangan formation in the central Persian Gulf, an integrated approach;Journal of African Earth Sciences;2023-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3