1. Graduate Studies in Mathematics;W. Adams,1994
2. Becker, T., Weispfenning, V. Gröbner Bases-A Computational Approach to Commutative Algebra. Springer-Verlag, GTM 141, New York, 1993
3. Buchberger, B. An algorithm for finding a basis for the residue class ring of a zero dimensiomal polynomial. PhD thesis, Universität Innsbruck, Institut für Mathematik, 1965
4. Buchberger, B. Gröbner bases: An algorithmic method in polynomial ideal theory. In: Recent Trends in Multidimensional Systems Theory, N.K. Bose (Ed), D. Reidel, Dordrecht, 1985, Chapter 6
5. Eisenbud, D. Direct method for primary decomposition. Invent Mth., 110: 207–235 (1992)