1. A. A. Kotsiolis (A. Cotsiolis), A. P. Oskolkov, and R. D. Shadiev, Global a priori estimates on the semiaxis t≥0, the asymptotic stability and periodicity with respect to time of the “small” solutions of the equations of motion of Oldroyd and Kelvin—Voight fluids. Preprint LOMI R-10-89 (1989).
2. A. A. Kotsiolis (A. Cotsiolis), A. P. Oskolkov, and R. D. Shadiev, “Asymptotic stability and periodicity with respect to time of the “small” solutions of the equations of motion of Oldroyd and Kelvin—Voight fluids,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,180, 137–150 (1989).
3. M. Shinbrot and S. Kaniel, “The initial value problem for the Navier-Stokes equations,” Arch. Rational Mech. Anal.21, No. 4, 270–285 (1966).
4. J. G. Heywood, “The Navier—Stokes equations: On the existence, regularity and decay of solutions,” Indiana Univ. Math. J.,29, No. 5, 639–681 (1980).
5. J. G. Heywood and R. Rannacher, “Finite element approximation of the nonstationary Navier—Stokes problem. 1. Regularity of solutions and second-order error estimates for spatial discretization,” SIAM J. Numer. Anal.,19, No. 2, 275–311 (1982).