Deep Multimodal Habit Tracking System: A User-adaptive Approach for Low-power Embedded Systems

Author:

Deniz DanielORCID,Jimenez-Perera Gabriel,Nolasco Ricardo,Corral Javier,Barranco Francisco

Abstract

AbstractThe pace of population ageing is increasing and is currently becoming one of the challenges our society faces. The introduction of Cyber-Physical Systems (CPS) has fostered the development of e-Health solutions that ease the associated economic and social burden. In this work, a CPS-based solution is presented to partially tackle the problem: a Deep Multimodal Habit Tracking system. The aim is to monitor daily life activities to alert in case of life-threatening situations improving their autonomy and supporting healthy lifestyles while living alone at home. Our approach combines video and heart rate cues to accurately identify indoor actions, running the processing locally in embedded edge nodes. Local processing provides inherent protection of data privacy since no image or vital signs are transmitted to the network, and reduces data bandwidth usage. Our solution achieves an accuracy of more than 80% in average, reaching up to a 95% for specific subjects after adapting the system. Adding heart-rate information improves F1-score by 2.4%. Additionally, the precision and recall for critical actions such as falls reaches up to 93.75%. Critical action detection is crucial due to their dramatic consequences, it helps to reduce false alarms, leading to building trust in the system and reducing economic cost. Also, the model is optimized and integrated in a Nvidia Jetson Nano embedded device, reaching real-time performance below 3.75 Watts. Finally, a dataset specifically designed for indoor action recognition using synchronized video and heart rate pulses has been collected.

Funder

H2020 Leadership in Enabling and Industrial Technologies

Mineco

Agencia Estatal de Investigación

Universidad de Granada

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Modeling and Simulation,Information Systems,Signal Processing,Theoretical Computer Science,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3