FPGA Design of Transposed Convolutions for Deep Learning Using High-Level Synthesis

Author:

Sestito CristianORCID,Perri StefaniaORCID,Stewart RobertORCID

Abstract

AbstractDeep Learning (DL) is pervasive across a wide variety of domains. Convolutional Neural Networks (CNNs) are often used for image processing DL applications. Modern CNN models are growing to meet the needs of more sophisticated tasks, e.g. using Transposed Convolutions (TCONVs) for image decompression and image generation. Such state-of-the-art DL models often target GPU-based high-performance architectures, due to the high computational and hardware resource needs of TCONV layers. To avoid prohibitive GPU energy costs, CNNs are increasingly deployed to decentralized embedded autonomous devices, such as Field Programmable Gate Arrays (FPGAs). However, this poses challenges for designing efficient hardware implementations of TCONV layers. This paper presents a parameterized design and implementation of a new TCONV module, which is synthesizable onto FPGAs. It is implemented using the High-Level Synthesis (HLS), through a C++ template to parameterize its functional and non-functional properties. These parameters allow kernel sizes, image sizes, quantization and parallelism to be varied by users. With a systematic exploration in this design space, we find an optimal instance of this TCONV module that achieves 6.25 Giga Outputs per Second (Gout/s) using just 1.53 W of power. We then use our TCONV layer in two neural networks for image decompression and image generation. Image decompression achieves a speed throughput of more than 30K frames-per-second (fps) using only the 16% of resources on average, image generation achieves an energy efficiency of 324 fps/W and outperforms comparable state-of-the-art models by at least 7.3×.

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Modeling and Simulation,Information Systems,Signal Processing,Theoretical Computer Science,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hardware Implementation of Calibration Data Loading in Device Driver for an SPI Peripheral;Proceedings of the 2024 6th International Electronics Communication Conference;2024-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3