Application Level Resource Scheduling for Deep Learning Acceleration on MPSoC

Author:

Gao Cong,Saha Sangeet,Zhu Xuqi,Jing Hongyuan,McDonald-Maier Klaus D.,Zhai XiaojunORCID

Abstract

AbstractDeep Neutral Networks (DNNs) have been widely used in many applications, such as self-driving cars, natural language processing (NLP), image classification, visual object recognition, and so on. Field-programmable gate array (FPGA) based Multiprocessor System on a Chip (MPSoC) is recently considered one of the popular choices for deploying DNN models. However, the limited resource capacity of MPSoC imposes a challenge for such practical implementation. Recent studies revealed the trade-off between the “resources consumed" vs. the “performance achieved". Taking a cue from these findings, we address the problem of efficient implementation of deep learning into the resource-constrained MPSoC in this paper, where each deep learning network is run with different service levels based on resource usage (where a higher service level implies higher performance with increased resource consumption). To this end, we propose a heuristic-based strategy, Application Wise Level Selector (AWLS), for selecting service levels to maximize the overall performance subject to a given resource bound. AWLS can achieve higher performance within a constrained resource budget under various simulation scenarios. Further, we verify the proposed strategy using an AMD-Xilinx Zynq UltraScale+ XCZU9EG SoC. Using a framework designed to deploy multi-DNN on multi-DPUs (Deep Learning Units), it is proved that an optimal solution is achieved from the algorithm, which obtains the highest performance (Frames Per Second) using the same resource budget.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Modeling and Simulation,Information Systems,Signal Processing,Theoretical Computer Science,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3