LightSpMV: Faster CUDA-Compatible Sparse Matrix-Vector Multiplication Using Compressed Sparse Rows

Author:

Liu Yongchao,Schmidt Bertil

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Modeling and Simulation,Information Systems,Signal Processing,Theoretical Computer Science,Control and Systems Engineering

Reference55 articles.

1. Aila, T., & Laine, S. (2009). Understanding the efficiency of ray traversal on gpus. In Proceedings of the conference on high performance graphics 2009 (pp. 145–149): ACM.

2. Aluru, M., Zola, J., Nettleton, D., & Aluru, S. (2012). Reverse engineering and analysis of large genome-scale gene networks. Nucleic acids research (p. gks904).

3. Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer, K., Patterson, D. A., Plishker, W. L., Shalf, J., Williams, S. W., & et al. (2006). The landscape of parallel computing research: A view from berkeley. Tech. rep., Technical Report UCB/EECS-2006-183, EECS Department, University of California, Berkeley.

4. Ashari, A., Sedaghati, N., Eisenlohr, J., Parthasarath, S., & Sadayappan, P. (2014). Fast sparse matrix-vector multiplication on gpus for graph applications. In Proceedings of the international conference for high performance computing, networking, storage and analysis (pp. 781–792): IEEE.

5. Ashari, A., Sedaghati, N., Eisenlohr, J., & Sadayappan, P. (2014). An efficient two-dimensional blocking strategy for sparse matrix-vector multiplication on gpus. In Proceedings of the 28th ACM international conference on supercomputing (pp. 273–282): ACM.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Algorithm Design of Optimizing SpMV on GPU;Proceedings of the 32nd International Symposium on High-Performance Parallel and Distributed Computing;2023-08-07

2. GTLB:A Load-Balanced SpMV Computation Method on GPU;Proceedings of the 2023 7th International Conference on High Performance Compilation, Computing and Communications;2023-06-17

3. Kaizen Programming for predicting numerical linear algebra operations performance;2022 IEEE Latin American Conference on Computational Intelligence (LA-CCI);2022-11-23

4. Multiple-precision sparse matrix–vector multiplication on GPUs;Journal of Computational Science;2022-05

5. A heterogeneous parallel implementation of the Markov clustering algorithm for large-scale biological networks on distributed CPU–GPU clusters;The Journal of Supercomputing;2022-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3