eBrainII: a 3 kW Realtime Custom 3D DRAM Integrated ASIC Implementation of a Biologically Plausible Model of a Human Scale Cortex

Author:

Stathis DimitriosORCID,Sudarshan Chirag,Yang Yu,Jung Matthias,Weis Christian,Hemani Ahmed,Lansner Anders,Wehn Norbert

Abstract

Abstract The Artificial Neural Networks (ANNs), like CNN/DNN and LSTM, are not biologically plausible. Despite their initial success, they cannot attain the cognitive capabilities enabled by the dynamic hierarchical associative memory systems of biological brains. The biologically plausible spiking brain models, e.g., cortex, basal ganglia, and amygdala, have a greater potential to achieve biological brain like cognitive capabilities. Bayesian Confidence Propagation Neural Network (BCPNN) is a biologically plausible spiking model of the cortex. A human-scale model of BCPNN in real-time requires 162 TFlop/s, 50 TBs of synaptic weight storage to be accessed with a bandwidth of 200 TBs. The spiking bandwidth is relatively modest at 250 GBs/s. A hand-optimized implementation of rodent scale BCPNN has been done on Tesla K80 GPUs require 3 kWs, we extrapolate from that a human scale network will require 3 MWs. These power numbers rule out such implementations for field deployment as cognition engines in embedded systems. The key innovation that this paper reports is that it is feasible and affordable to implement real-time BCPNN as a custom tiled application-specific integrated circuit (ASIC) in 28 nm technology with custom 3D DRAM - eBrainII - that consumes 3 kW for human scale and 12 watts for rodent scale. Such implementations eminently fulfill the demands for field deployment.

Funder

Royal Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Modeling and Simulation,Information Systems,Signal Processing,Theoretical Computer Science,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel adaptive quantization methodology for 8-bit floating-point DNN training;Design Automation for Embedded Systems;2024-02-16

2. Unsupervised Representation Learning with Hebbian Synaptic and Structural Plasticity in Brain-Like Feedforward Neural Networks;2024

3. References;Accelerators for Convolutional Neural Networks;2023-10-13

4. A Memristor-Based Learning Engine for Synaptic Trace-Based Online Learning;IEEE Transactions on Biomedical Circuits and Systems;2023-10

5. Mapping the BCPNN Learning Rule to a Memristor Model;Frontiers in Neuroscience;2021-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3