Near-optimal Multiplier-Less Broadband Noise Shaping Filters

Author:

Brachtendorf Hans GeorgORCID,Dalpiaz Christoph

Abstract

AbstractNoise shaping (NS) filters reduce the quantization noise power in one or more frequency band(s) while amplifying it in other bands. Narrow-band noise shaping filters are state of the art in audio signal processing, analog-digital and digital-analog conversion, direct digital synthesis, and other applications. However, it is much more difficult to design broadband NS filters. Since NS filters are used in feedback branches, they must therefore be designed direct path free which imposes a constraint on the filter coefficients. This constraint leads to prohibitive large filter coefficients employing state of the art filter design techniques.This paper investigates the theoretical bound for NS filters and shows results about a novel design method for broadband FIR and IIR noise shaping filters and its multiplier-less hardware implementation. The method employed is a purely numerical approximation technique and leads to filter designs close to the discussed theoretical bound. The quantization of the filter coefficients is performed by a Canonical Signed Digit (CSD) representation of the coefficients. Two alternative architectures for the implementation of the filters are discussed. The design technique and the CSD quantization are realized in a toolbox. The filters were moreover implemented in VHDL.

Funder

University of Applied Sciences Upper Austria

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Modeling and Simulation,Information Systems,Signal Processing,Theoretical Computer Science,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3